
Homocysteine and Folate in Pregnancy

The importance of folate during pregnancy was ad-
dressed 40 years ago by Bryan Hibbard (1 ) in his study of
folate status in 1484 low-income obstetric patients from
Liverpool. He assessed folate status as urinary excretion
of formiminoglutamic acid. Abnormal formiminoglu-
tamic acid excretion was related not only to placental
abruption and spontaneous abortion but also to adverse
outcomes in previous pregnancies, including prematurity,
congenital defects, and perinatal mortality. Shortly there-
after, Hibbard and Smithells (2 ) suggested that folate
deficiency in pregnancy may be related to central nervous
system malformations, and Smithells started a series of
observational and intervention studies demonstrating
that adequate folate status reduced the risk of neural tube
defects (NTDs), observations that eventually in the early
1990s were confirmed in large, randomized intervention
trials (3, 4).

It is now established that periconceptional folate sup-
plementation reduces the occurrence and recurrence of
NTDs (3, 4). The results obtained in many observational
studies suggest that low folate intake or low circulating
folate increases the risk of preterm delivery and low birth
weight (5 ). However, a recent Dutch study on several B
vitamins measured before and during pregnancy in
healthy, well-nourished women demonstrated no associ-
ation between the vitamin concentrations and birth
weight or risk of early pregnancy loss (6 ). The results
from randomized intervention trials with folic acid have
been equivocal (5 ). Thus, the link between maternal folate
status and birth weight is uncertain.

The conclusions of the observational studies on vita-
mins and adverse pregnancy outcomes have been ques-
tioned because of methodologic weaknesses. These
include inaccurate assessment of vitamin intake, measure-
ment errors attributable to variable plasma-volume ex-
pansion during pregnancy, and confounders such as drug
use and stress, intake of other micronutrients, and energy
intake and socioeconomic status (7 ). In particular, smok-
ing is a potential confounder because it is related to poor
vitamin status, high total homocysteine (tHcy) (8 ), and
low birth weight (9 ). Analyses should therefore also be
carried out among nonsmokers.

The concentration of tHcy in plasma is a responsive
marker of impaired folate status. In 1991, Steegers-
Theunissen et al. (10 ) suggested that maternal hyperho-
mocysteinemia was a risk factor for NTDs. Subsequent
studies demonstrated increased tHcy in mothers of chil-
dren with NTDs even in the absence of low circulating
folate, suggesting a direct adverse effect of homocysteine
on the developing fetus (4 ). Several studies also demon-
strated that high tHcy is a risk factor of placenta-mediated
diseases, such as preeclampsia, spontaneous abortion,
placental abruption, and recurrent pregnancy loss (11–
13).

Several malformations and obstetric complications as-
sociated with tHcy have been investigated in relation to

the TT genotype of the methylenetetrahydrofolate reduc-
tase (MTHFR) 677C�T polymorphism, which affects in-
tracellular folate distribution and is associated with in-
creased tHcy under conditions of impaired folate status
(14 ). Because genotype, in contrast to vitamin or homo-
cysteine status, is not changed during pregnancy or by
pregnancy-related complications, associations with vari-
ant genotypes may give clues as to the mechanisms
involved. NTDs show a consistent relationship with the
MTHFR TT genotype (of both the mother and the baby),
suggesting that the TT genotype may predispose to in-
creased tHcy in women with NTD pregnancies and may
also partly explain the protective effect of folate supple-
mentation (4, 15).

However, the MTHFR 677C�T polymorphism shows a
weak or inconsistent association with other pregnancy
complications, including placenta-mediated disease, in-
trauterine growth retardation, and low birth weight
(11, 16, 17), and the mechanisms involved are unclear.
Homocysteine could be directly involved by causing
vasculopathy leading to inadequate maternal–fetal circu-
lation. This is in accordance with the observed relation-
ship between high tHcy and defective chorionic villous
vascularization in mothers with recurrent early preg-
nancy loss (18 ). Alternatively, increased tHcy may be only
a marker of underlying conditions that are directly related
to pregnancy complications, such a subclinical vascular
disease, reduced glomerular filtration rate (19 ) (which is
inversely associated with tHcy (20 ), and inadequate plas-
ma-volume expansion (21, 22).

Most studies on maternal tHcy and pregnancy compli-
cations have measured tHcy near the time of delivery
(23, 24) or up to years after the index pregnancy (5, 13),
whereas only a few studies have measured tHcy before or
during pregnancy (25–27). This is a possible shortcoming
because the time interval between exposure and event
may attenuate the association, because the disease itself
may affect the tHcy concentration, and because of marked
changes in plasma tHcy during pregnancy (16 ).

Low plasma tHcy during an uncomplicated pregnancy
was first demonstrated by Kang et al. (28 ) almost 20 years
ago, and this has subsequently been confirmed by numer-
ous investigators (16 ). Plasma tHcy concentrations are
30–60% lower in pregnant women than in nonpregnant
women, and the lowest tHcy values are observed in the
second trimester. In a recent longitudinal study of tHcy
during pregnancy, Murphy et al. (29 ) demonstrated that
the reduction cannot be accounted for by folic acid
supplementation, plasma-volume expansion, or a de-
crease in serum albumin. They suggest that low tHcy
represents a physiologic adaptation to pregnancy, medi-
ated by endocrine changes. In line with this, it has been
speculated whether homocysteine plays a role in regulat-
ing hemostasis during pregnancy (16 ) and myometrial
contractility at labor (30 ).

In this issue of Clinical Chemistry, Murphy et al. (31 )
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present additional analyses of data from their longitudi-
nal study on tHcy in plasma from 93 healthy women,
collected 2–10 weeks before conception; at gestational
weeks 8, 20, and 32; and immediately before delivery. The
novel data presented here show an increase in tHcy from
week 32 of gestation, and the tHcy concentration at
delivery in mothers not supplemented with folic acid was
essentially similar to that measured before conception.
Furthermore, maternal tHcy concentrations correlated
from preconception throughout pregnancy and at birth,
which in turn correlated with tHcy concentrations in cord
blood. The concentrations of both maternal and fetal tHcy
were lowered by folic acid supplementation. Finally,
maternal tHcy at preconception, at 8 weeks, and at birth
was inversely related to birth weight. This association was
upheld after adjustment for maternal smoking.

As emphasized by the authors (31 ), the correlation
between preconceptional tHcy and tHcy during preg-
nancy points to the possibility that preconceptional tHcy
may predict tHcy-associated pregnancy complications.
Large prospective studies are needed to investigate this
possibility. It also seems rational that preconceptional
tHcy may identify mothers at increased risk of complica-
tions and who may benefit from folic acid supplementa-
tion, but this idea gains limited support from the equiv-
ocal results from the intervention trials with folic acid
cited above (5 ). Finally, the observed lower birth weights
in babies of mothers with the highest tHcy agrees with
some (13, 32–34), but not all (24, 26, 35, 36), published
studies and adds to an apparently confusing body of
literature on the relationship between maternal tHcy and
birth weight or intrauterine growth retardation.

The discrepant results may be related to study design,
including the population investigated. The study of Mur-
phy et al. (31 ) and two other studies reporting an inverse
association (34 ), including a large population-based study
of �6000 mothers (13 ), investigated birth weight and
tHcy in healthy unselected mothers. These studies had a
cross-sectional design. Infante-Rivard et al. (24 ) compared
tHcy in 483 mothers (cases) giving birth to babies with
birth weights below the 10th percentile with that in 409
mothers with healthy babies (controls). The authors un-
expectedly observed lower tHcy among mothers of low-
birth-weight babies. A notable characteristic of this study
is that it was carried out in a folate-fortified population,
and the overall maternal tHcy was low. Furthermore,
tHcy concentrations were measured after birth. Conceiv-
ably, nutritional or hemostatic factors that predict severe
growth restriction may be different from those that are
associated with moderate variability in birth weight.

In conclusion, impaired folate status, the associated high
tHcy, and the MTHFR TT genotype are associated with
NTDs. The prevention of �50% of recurrent and first
NTDs by folic acid supplementation probably represents
one of the most important advances in preventive medi-
cine of the 1990s. Low folate status and hyperhomocys-
teinemia have been linked to other malformations and
pregnancy complications and adverse outcomes, but the

direction of causality and the importance are uncertain.
Large intervention trials as well as prospective studies
measuring tHcy and folate status before and during
pregnancy are needed to establish the role of these and
related factors as predictors or etiologic factors of adverse
pregnancy outcomes and complications.
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